Copied to
clipboard

G = C338Q16order 432 = 24·33

5th semidirect product of C33 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial

Aliases: C338Q16, C325Dic12, C12.55S32, (C3×C6).40D12, (C3×C12).123D6, (C32×C6).40D4, C32(C325Q16), C338Q8.3C2, C324Q8.3S3, C329(C3⋊Q16), C31(C323Q16), C6.15(C12⋊S3), C2.7(C338D4), C6.11(C3⋊D12), (C32×C12).19C22, C3⋊C8.(C3⋊S3), C4.4(S3×C3⋊S3), (C3×C3⋊C8).3S3, C12.16(C2×C3⋊S3), (C32×C3⋊C8).1C2, (C3×C6).80(C3⋊D4), (C3×C324Q8).3C2, SmallGroup(432,447)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C338Q16
C1C3C32C33C32×C6C32×C12C32×C3⋊C8 — C338Q16
C33C32×C6C32×C12 — C338Q16
C1C2C4

Generators and relations for C338Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >

Subgroups: 880 in 156 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, Dic12, C3⋊Q16, C32×C6, C3×C3⋊C8, C3×C24, C3×Dic6, C324Q8, C324Q8, C3×C3⋊Dic3, C335C4, C32×C12, C323Q16, C325Q16, C32×C3⋊C8, C3×C324Q8, C338Q8, C338Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, Dic12, C3⋊Q16, C3⋊D12, C12⋊S3, S3×C3⋊S3, C323Q16, C325Q16, C338D4, C338Q16

Smallest permutation representation of C338Q16
On 144 points
Generators in S144
(1 141 62)(2 142 63)(3 143 64)(4 144 57)(5 137 58)(6 138 59)(7 139 60)(8 140 61)(9 46 97)(10 47 98)(11 48 99)(12 41 100)(13 42 101)(14 43 102)(15 44 103)(16 45 104)(17 119 82)(18 120 83)(19 113 84)(20 114 85)(21 115 86)(22 116 87)(23 117 88)(24 118 81)(25 110 131)(26 111 132)(27 112 133)(28 105 134)(29 106 135)(30 107 136)(31 108 129)(32 109 130)(33 128 79)(34 121 80)(35 122 73)(36 123 74)(37 124 75)(38 125 76)(39 126 77)(40 127 78)(49 65 90)(50 66 91)(51 67 92)(52 68 93)(53 69 94)(54 70 95)(55 71 96)(56 72 89)
(1 49 38)(2 50 39)(3 51 40)(4 52 33)(5 53 34)(6 54 35)(7 55 36)(8 56 37)(9 29 87)(10 30 88)(11 31 81)(12 32 82)(13 25 83)(14 26 84)(15 27 85)(16 28 86)(17 41 109)(18 42 110)(19 43 111)(20 44 112)(21 45 105)(22 46 106)(23 47 107)(24 48 108)(57 93 79)(58 94 80)(59 95 73)(60 96 74)(61 89 75)(62 90 76)(63 91 77)(64 92 78)(65 125 141)(66 126 142)(67 127 143)(68 128 144)(69 121 137)(70 122 138)(71 123 139)(72 124 140)(97 135 116)(98 136 117)(99 129 118)(100 130 119)(101 131 120)(102 132 113)(103 133 114)(104 134 115)
(1 38 49)(2 50 39)(3 40 51)(4 52 33)(5 34 53)(6 54 35)(7 36 55)(8 56 37)(9 29 87)(10 88 30)(11 31 81)(12 82 32)(13 25 83)(14 84 26)(15 27 85)(16 86 28)(17 109 41)(18 42 110)(19 111 43)(20 44 112)(21 105 45)(22 46 106)(23 107 47)(24 48 108)(57 93 79)(58 80 94)(59 95 73)(60 74 96)(61 89 75)(62 76 90)(63 91 77)(64 78 92)(65 141 125)(66 126 142)(67 143 127)(68 128 144)(69 137 121)(70 122 138)(71 139 123)(72 124 140)(97 135 116)(98 117 136)(99 129 118)(100 119 130)(101 131 120)(102 113 132)(103 133 114)(104 115 134)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 81 5 85)(2 88 6 84)(3 87 7 83)(4 86 8 82)(9 36 13 40)(10 35 14 39)(11 34 15 38)(12 33 16 37)(17 57 21 61)(18 64 22 60)(19 63 23 59)(20 62 24 58)(25 51 29 55)(26 50 30 54)(27 49 31 53)(28 56 32 52)(41 79 45 75)(42 78 46 74)(43 77 47 73)(44 76 48 80)(65 129 69 133)(66 136 70 132)(67 135 71 131)(68 134 72 130)(89 109 93 105)(90 108 94 112)(91 107 95 111)(92 106 96 110)(97 123 101 127)(98 122 102 126)(99 121 103 125)(100 128 104 124)(113 142 117 138)(114 141 118 137)(115 140 119 144)(116 139 120 143)

G:=sub<Sym(144)| (1,141,62)(2,142,63)(3,143,64)(4,144,57)(5,137,58)(6,138,59)(7,139,60)(8,140,61)(9,46,97)(10,47,98)(11,48,99)(12,41,100)(13,42,101)(14,43,102)(15,44,103)(16,45,104)(17,119,82)(18,120,83)(19,113,84)(20,114,85)(21,115,86)(22,116,87)(23,117,88)(24,118,81)(25,110,131)(26,111,132)(27,112,133)(28,105,134)(29,106,135)(30,107,136)(31,108,129)(32,109,130)(33,128,79)(34,121,80)(35,122,73)(36,123,74)(37,124,75)(38,125,76)(39,126,77)(40,127,78)(49,65,90)(50,66,91)(51,67,92)(52,68,93)(53,69,94)(54,70,95)(55,71,96)(56,72,89), (1,49,38)(2,50,39)(3,51,40)(4,52,33)(5,53,34)(6,54,35)(7,55,36)(8,56,37)(9,29,87)(10,30,88)(11,31,81)(12,32,82)(13,25,83)(14,26,84)(15,27,85)(16,28,86)(17,41,109)(18,42,110)(19,43,111)(20,44,112)(21,45,105)(22,46,106)(23,47,107)(24,48,108)(57,93,79)(58,94,80)(59,95,73)(60,96,74)(61,89,75)(62,90,76)(63,91,77)(64,92,78)(65,125,141)(66,126,142)(67,127,143)(68,128,144)(69,121,137)(70,122,138)(71,123,139)(72,124,140)(97,135,116)(98,136,117)(99,129,118)(100,130,119)(101,131,120)(102,132,113)(103,133,114)(104,134,115), (1,38,49)(2,50,39)(3,40,51)(4,52,33)(5,34,53)(6,54,35)(7,36,55)(8,56,37)(9,29,87)(10,88,30)(11,31,81)(12,82,32)(13,25,83)(14,84,26)(15,27,85)(16,86,28)(17,109,41)(18,42,110)(19,111,43)(20,44,112)(21,105,45)(22,46,106)(23,107,47)(24,48,108)(57,93,79)(58,80,94)(59,95,73)(60,74,96)(61,89,75)(62,76,90)(63,91,77)(64,78,92)(65,141,125)(66,126,142)(67,143,127)(68,128,144)(69,137,121)(70,122,138)(71,139,123)(72,124,140)(97,135,116)(98,117,136)(99,129,118)(100,119,130)(101,131,120)(102,113,132)(103,133,114)(104,115,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,81,5,85)(2,88,6,84)(3,87,7,83)(4,86,8,82)(9,36,13,40)(10,35,14,39)(11,34,15,38)(12,33,16,37)(17,57,21,61)(18,64,22,60)(19,63,23,59)(20,62,24,58)(25,51,29,55)(26,50,30,54)(27,49,31,53)(28,56,32,52)(41,79,45,75)(42,78,46,74)(43,77,47,73)(44,76,48,80)(65,129,69,133)(66,136,70,132)(67,135,71,131)(68,134,72,130)(89,109,93,105)(90,108,94,112)(91,107,95,111)(92,106,96,110)(97,123,101,127)(98,122,102,126)(99,121,103,125)(100,128,104,124)(113,142,117,138)(114,141,118,137)(115,140,119,144)(116,139,120,143)>;

G:=Group( (1,141,62)(2,142,63)(3,143,64)(4,144,57)(5,137,58)(6,138,59)(7,139,60)(8,140,61)(9,46,97)(10,47,98)(11,48,99)(12,41,100)(13,42,101)(14,43,102)(15,44,103)(16,45,104)(17,119,82)(18,120,83)(19,113,84)(20,114,85)(21,115,86)(22,116,87)(23,117,88)(24,118,81)(25,110,131)(26,111,132)(27,112,133)(28,105,134)(29,106,135)(30,107,136)(31,108,129)(32,109,130)(33,128,79)(34,121,80)(35,122,73)(36,123,74)(37,124,75)(38,125,76)(39,126,77)(40,127,78)(49,65,90)(50,66,91)(51,67,92)(52,68,93)(53,69,94)(54,70,95)(55,71,96)(56,72,89), (1,49,38)(2,50,39)(3,51,40)(4,52,33)(5,53,34)(6,54,35)(7,55,36)(8,56,37)(9,29,87)(10,30,88)(11,31,81)(12,32,82)(13,25,83)(14,26,84)(15,27,85)(16,28,86)(17,41,109)(18,42,110)(19,43,111)(20,44,112)(21,45,105)(22,46,106)(23,47,107)(24,48,108)(57,93,79)(58,94,80)(59,95,73)(60,96,74)(61,89,75)(62,90,76)(63,91,77)(64,92,78)(65,125,141)(66,126,142)(67,127,143)(68,128,144)(69,121,137)(70,122,138)(71,123,139)(72,124,140)(97,135,116)(98,136,117)(99,129,118)(100,130,119)(101,131,120)(102,132,113)(103,133,114)(104,134,115), (1,38,49)(2,50,39)(3,40,51)(4,52,33)(5,34,53)(6,54,35)(7,36,55)(8,56,37)(9,29,87)(10,88,30)(11,31,81)(12,82,32)(13,25,83)(14,84,26)(15,27,85)(16,86,28)(17,109,41)(18,42,110)(19,111,43)(20,44,112)(21,105,45)(22,46,106)(23,107,47)(24,48,108)(57,93,79)(58,80,94)(59,95,73)(60,74,96)(61,89,75)(62,76,90)(63,91,77)(64,78,92)(65,141,125)(66,126,142)(67,143,127)(68,128,144)(69,137,121)(70,122,138)(71,139,123)(72,124,140)(97,135,116)(98,117,136)(99,129,118)(100,119,130)(101,131,120)(102,113,132)(103,133,114)(104,115,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,81,5,85)(2,88,6,84)(3,87,7,83)(4,86,8,82)(9,36,13,40)(10,35,14,39)(11,34,15,38)(12,33,16,37)(17,57,21,61)(18,64,22,60)(19,63,23,59)(20,62,24,58)(25,51,29,55)(26,50,30,54)(27,49,31,53)(28,56,32,52)(41,79,45,75)(42,78,46,74)(43,77,47,73)(44,76,48,80)(65,129,69,133)(66,136,70,132)(67,135,71,131)(68,134,72,130)(89,109,93,105)(90,108,94,112)(91,107,95,111)(92,106,96,110)(97,123,101,127)(98,122,102,126)(99,121,103,125)(100,128,104,124)(113,142,117,138)(114,141,118,137)(115,140,119,144)(116,139,120,143) );

G=PermutationGroup([[(1,141,62),(2,142,63),(3,143,64),(4,144,57),(5,137,58),(6,138,59),(7,139,60),(8,140,61),(9,46,97),(10,47,98),(11,48,99),(12,41,100),(13,42,101),(14,43,102),(15,44,103),(16,45,104),(17,119,82),(18,120,83),(19,113,84),(20,114,85),(21,115,86),(22,116,87),(23,117,88),(24,118,81),(25,110,131),(26,111,132),(27,112,133),(28,105,134),(29,106,135),(30,107,136),(31,108,129),(32,109,130),(33,128,79),(34,121,80),(35,122,73),(36,123,74),(37,124,75),(38,125,76),(39,126,77),(40,127,78),(49,65,90),(50,66,91),(51,67,92),(52,68,93),(53,69,94),(54,70,95),(55,71,96),(56,72,89)], [(1,49,38),(2,50,39),(3,51,40),(4,52,33),(5,53,34),(6,54,35),(7,55,36),(8,56,37),(9,29,87),(10,30,88),(11,31,81),(12,32,82),(13,25,83),(14,26,84),(15,27,85),(16,28,86),(17,41,109),(18,42,110),(19,43,111),(20,44,112),(21,45,105),(22,46,106),(23,47,107),(24,48,108),(57,93,79),(58,94,80),(59,95,73),(60,96,74),(61,89,75),(62,90,76),(63,91,77),(64,92,78),(65,125,141),(66,126,142),(67,127,143),(68,128,144),(69,121,137),(70,122,138),(71,123,139),(72,124,140),(97,135,116),(98,136,117),(99,129,118),(100,130,119),(101,131,120),(102,132,113),(103,133,114),(104,134,115)], [(1,38,49),(2,50,39),(3,40,51),(4,52,33),(5,34,53),(6,54,35),(7,36,55),(8,56,37),(9,29,87),(10,88,30),(11,31,81),(12,82,32),(13,25,83),(14,84,26),(15,27,85),(16,86,28),(17,109,41),(18,42,110),(19,111,43),(20,44,112),(21,105,45),(22,46,106),(23,107,47),(24,48,108),(57,93,79),(58,80,94),(59,95,73),(60,74,96),(61,89,75),(62,76,90),(63,91,77),(64,78,92),(65,141,125),(66,126,142),(67,143,127),(68,128,144),(69,137,121),(70,122,138),(71,139,123),(72,124,140),(97,135,116),(98,117,136),(99,129,118),(100,119,130),(101,131,120),(102,113,132),(103,133,114),(104,115,134)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,81,5,85),(2,88,6,84),(3,87,7,83),(4,86,8,82),(9,36,13,40),(10,35,14,39),(11,34,15,38),(12,33,16,37),(17,57,21,61),(18,64,22,60),(19,63,23,59),(20,62,24,58),(25,51,29,55),(26,50,30,54),(27,49,31,53),(28,56,32,52),(41,79,45,75),(42,78,46,74),(43,77,47,73),(44,76,48,80),(65,129,69,133),(66,136,70,132),(67,135,71,131),(68,134,72,130),(89,109,93,105),(90,108,94,112),(91,107,95,111),(92,106,96,110),(97,123,101,127),(98,122,102,126),(99,121,103,125),(100,128,104,124),(113,142,117,138),(114,141,118,137),(115,140,119,144),(116,139,120,143)]])

60 conjugacy classes

class 1  2 3A···3E3F3G3H3I4A4B4C6A···6E6F6G6H6I8A8B12A···12H12I···12Q12R12S24A···24P
order123···333334446···666668812···1212···12121224···24
size112···244442361082···24444662···24···436366···6

60 irreducible representations

dim1111222222224444
type++++++++-+-+-+-
imageC1C2C2C2S3S3D4D6Q16D12C3⋊D4Dic12S32C3⋊Q16C3⋊D12C323Q16
kernelC338Q16C32×C3⋊C8C3×C324Q8C338Q8C3×C3⋊C8C324Q8C32×C6C3×C12C33C3×C6C3×C6C32C12C32C6C3
# reps11114115282164148

Matrix representation of C338Q16 in GL8(𝔽73)

10000000
01000000
000720000
001720000
00001000
00000100
000000072
000000172
,
10000000
01000000
00100000
00010000
00001000
00000100
000000072
000000172
,
10000000
01000000
00100000
00010000
0000727200
00001000
00000010
00000001
,
4132000000
570000000
00100000
00010000
000072000
00001100
00000010
00000001
,
2434000000
4149000000
0022410000
0063510000
000072000
000007200
00000001
00000010

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[41,57,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[24,41,0,0,0,0,0,0,34,49,0,0,0,0,0,0,0,0,22,63,0,0,0,0,0,0,41,51,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C338Q16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_8Q_{16}
% in TeX

G:=Group("C3^3:8Q16");
// GroupNames label

G:=SmallGroup(432,447);
// by ID

G=gap.SmallGroup(432,447);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,85,64,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽